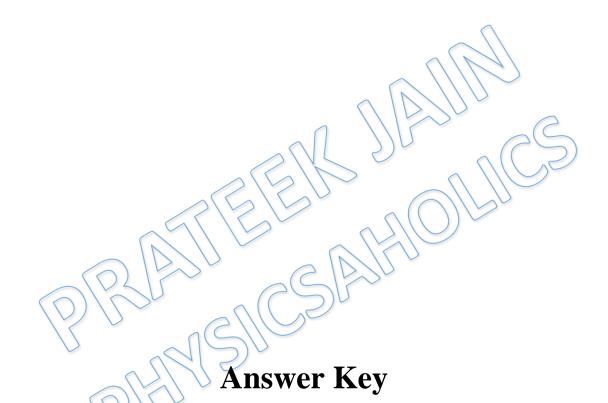
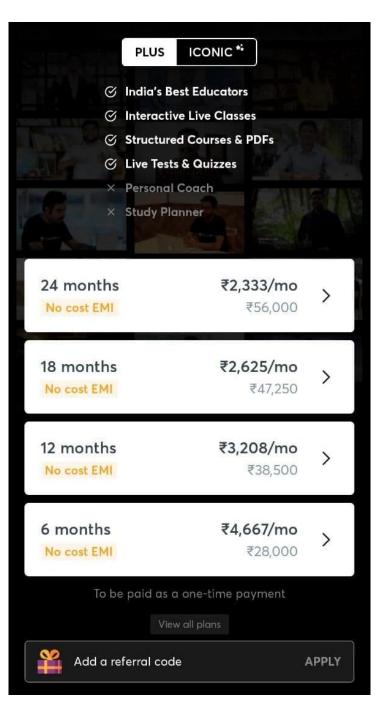


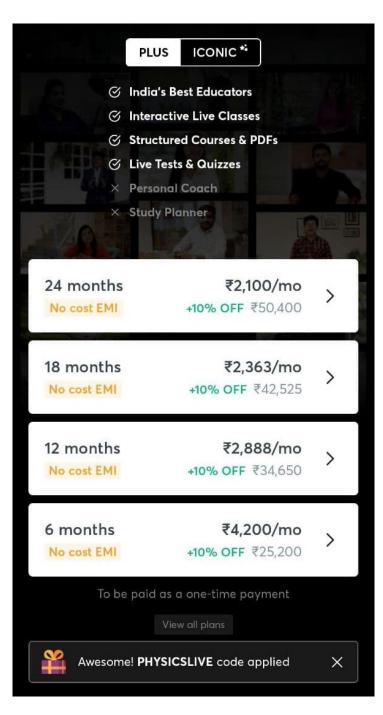
DPP – 3 (KTG)


Video Solution on Website:-		https://phy	sicsaholics.com/ho	me/courseDetails/57				
Video Solution on YouTube:-		https://youtu.be/R21yaok6WpQ						
Written Solution	on on Website:-	https://phy	sicsaholics.com/no	te/notesDetalis/32				
Q 1.	Calculate the total n (a) 30.10×10^{23} (c) 12.24×10^{20}	(b) 3.1	of freedom for a mole of 0×10^{23} 4×10^{17}	diatomic gas at STP				
Q 2.	At what temperature (a) 123°C	e, the kinetic ene (b) 123 <i>K</i>	rgy of a gas molecule is ha	alf of the value at 27°C? (d) -123°C				
Q 3.	The number of degree (a) 3	ees of freedom fo (b) 5	or a rigid diatomic molecu	le is (d) 7				
Q 4.	The energy associate (a) $\frac{1}{2}RT$	ed with each deg $(b) \frac{1}{2} KT$	tree of freedom of a molec (c) $\frac{3}{2}RT$	ule $(d)\frac{3}{2}KT$				
Q 5.	A polyatomic gas w by (a) $\frac{n}{2}RT$	with (n) degrees of (b) $\frac{1}{2}RT$	of freedom has a mean energy (c) $\frac{n}{2}kT$	ergy per molecule given $ (d) \frac{1}{2}kT $				
Q 6.			of molecules of argon gas i (c) 5	L				
Q 7.		\)	l (having negligible therma K, then average kinetic end	<u> </u>				
	(a) $\sqrt{2}$ times	(b) 2 times	(c) unchanged	(d) half				
Q 8.	•	_	gy of hydrogen molecule a ergy of helium at same tem (c) E	*				
Q 9.	oxygen gas at 300 K values at 600 K are	Care 6.21 × 10 ⁻¹ nearly (assuming 1,928 m/s	I the rms speed of molecul 21 J and 484m/s respective g ideal gas behavior) (b) 8.78×10^{-21} J, 684 n (d) 12.42×10^{-21} J, 684	ly The corresponding				

hysicsaholics

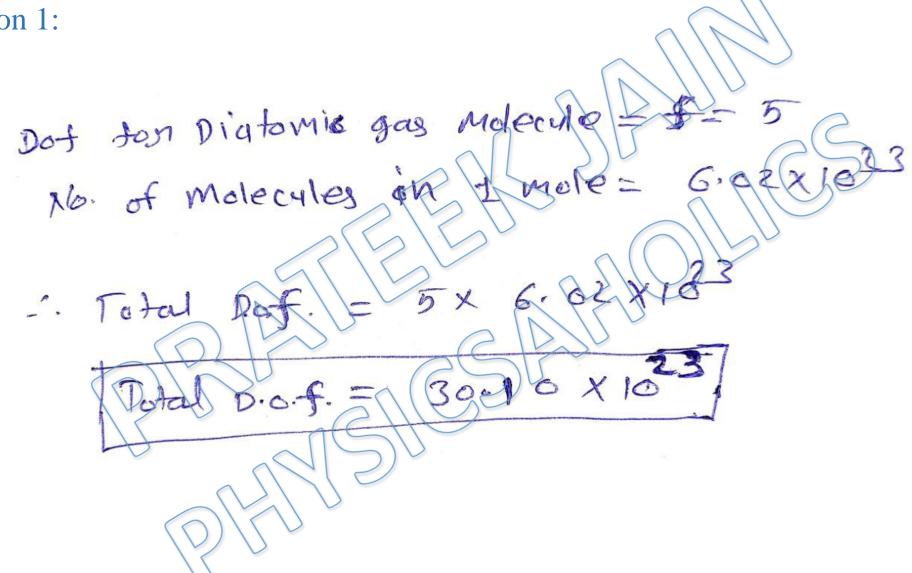


- Q 10. One kg of a diatomic gas is at a pressure of $8 \times 10^4 \ N/m^2$. The density of the gas is $4 \text{kg/}m^3$. What is the energy of the gas due to its thermal motion?
 - (a) $5 \times 10^4 J$
- (b) $6 \times 10^4 \text{J}$
- (c) $7 \times 10^4 J$
- (d) $4 \times 10^4 J$
- Q 11. The average kinetic energy of H_2 molecules at 300K is E at the same temperature the average kinetic energy of O_2 molecules is: (a) E (b) $\frac{E}{4}$
- (c) $\frac{E}{16}$
- (d) 16E


Q.1	a	Q.2	d	Q.3	b	Q.4	b	Q.5	c
Q.6	b	Q.7	b	Q.8	d	Q.9	d	Q.10	a
O 11				I		ı		1	

Q.11 a

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.



NEET & JEE Main Physics DPP- Solution

DPP- 3 Kinetic Energy of Gas, Degree of freedom of gas molecules

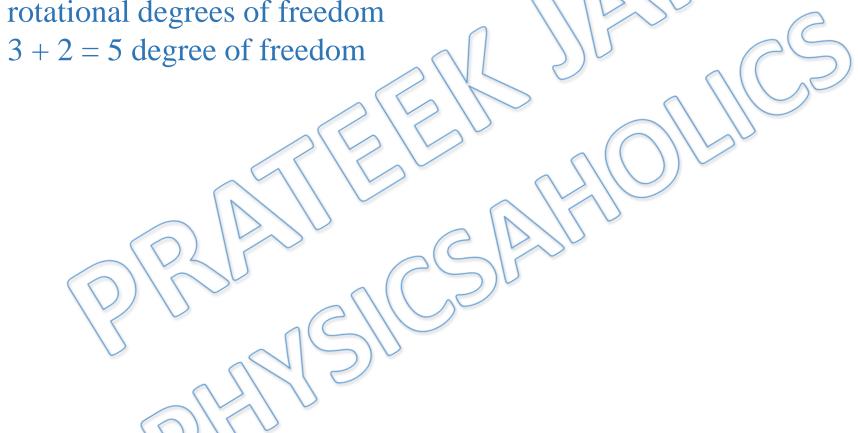
By Physicsaholics Team

Solution 1:

Solution 2:

$$KE = \frac{3}{2}kT$$

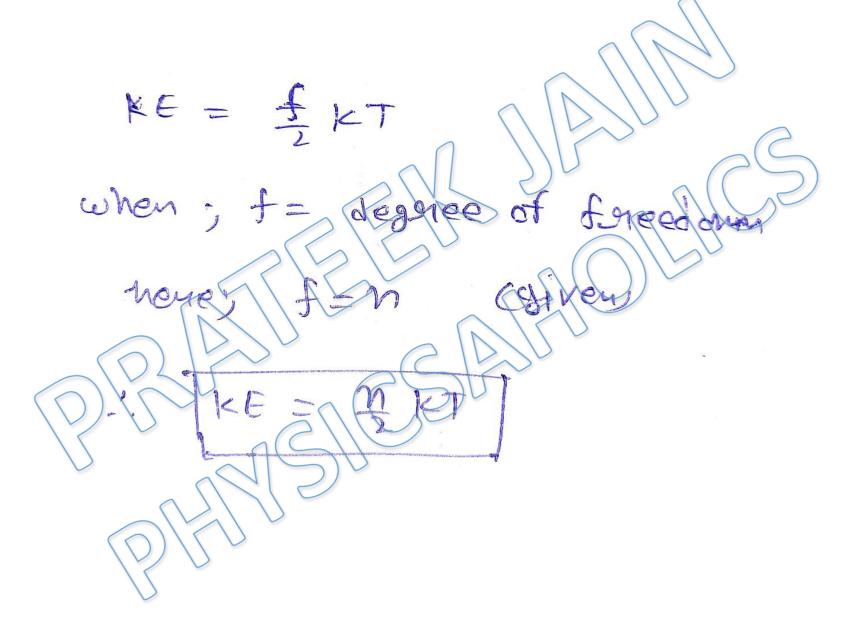
$$KE_1 = \frac{T_1}{kE_2}$$


$$\frac{1}{2}kE_1 = \frac{3}{2}kE_1$$

Ans. d

Solution 3:

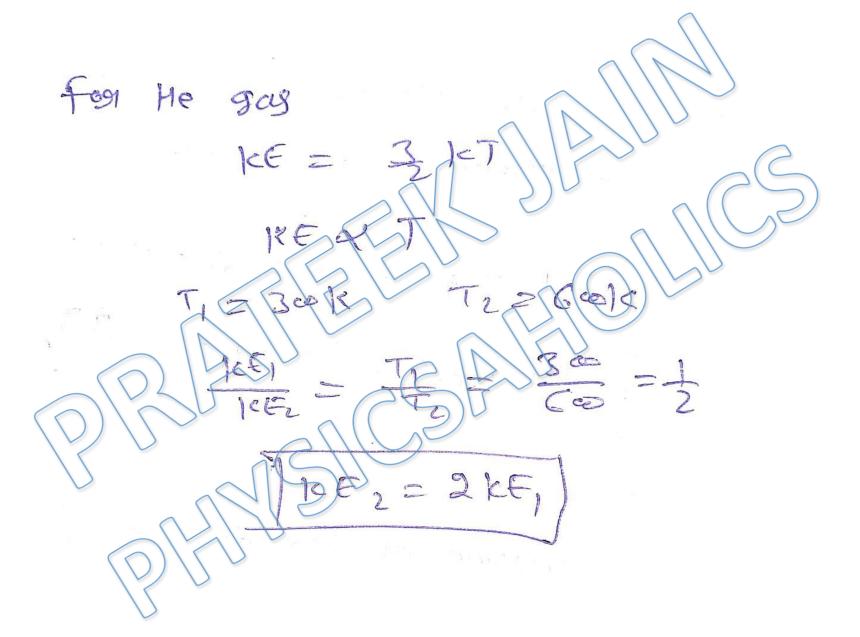
Rigid diatomic molecules have 3 translational degrees of freedom and 2


rotational degrees of freedom

Dot ton Diatomis gas Molecule = 5-5 No. of molecules on 1 mole= 6,02×1023 Solution 4: -. Total Dof. = 5 x 6 62 x103 Total D.o.f. = 30010 x 103 degree of freedom 198. associate with each D. of

Ans. b

Solution 5:


Solution 6:

Argon gas has monoatomic molecules of Ar.

: It has only translational degree of freedom

So, degree of freedom for argon gas is = 3

Solution 7:

Solution 8:

gration degree of freedom

From M2 mole cute = 2

$$E_R = \frac{f_R}{2} |_{E_T} = \frac{2}{2} |_{E_T}$$

$$E_R = |_{E_T} = \frac{1}{2} |_{E_T}$$
To provide a pas mole cute

$$E_T = \frac{1}{2} |_{E_T} = \frac{3}{2} |_{E_T}$$

$$E_T = \frac{3}{2} |_{E_T} = \frac{3}{2} |_{E_T}$$

$$E_T = \frac{3}{2} |_{E_T} = \frac{3}{2} |_{E_T}$$

Solution 9: $\mathcal{E} = \frac{1}{2} \mathcal{E} \mathsf{T}$

Solution 10:

10:

$$KF = \frac{5}{2} PV$$

[Dof = 5 feat diatomic]

 $EE = \frac{5}{2} \times P \times \left(\frac{Mass}{100 \text{ picg}} \right)$
 $EE = \frac{5}{2} \times 8 \times 10^{9} \times \left(\frac{1}{2} \text{ res/ms} \right)$
 $EE = \frac{5}{2} \times 8 \times 10^{9} \times \left(\frac{1}{2} \text{ res/ms} \right)$
 $EE = \frac{5}{2} \times 8 \times 10^{9} \times \left(\frac{1}{2} \text{ res/ms} \right)$

Solution 11:

The mean kinetic energy of a gas depends only on temperature and is independent of molecular weight

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/57

Video Solution on YouTube:-

https://youtu.be/R21yaok6WpQ

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/32

@Physicsaholics

@<u>IITJEE_Physics</u>

physicsaholics.com

Unacademy

CUSIS NIKIS